

	Nat 5 Prelim – Non-Calculator	20				
1.	Evaluate $2^{1/4} \div \frac{3}{8}$	2				
2.	Multiply the brackets and simplify $4x - (x-4)(2x+1)$	3				
3.	Find the equation of the straight line through the points $(0,-2)$ and $(5,2)$					
4.	Factorise $2x^2 + 5x - 3$	2				
5.	Solve, algebraically, the system of equations					
	3x + 2y = 13 x - y = 1	3				
6.	Determine the nature of the roots of the equation $3x^2 + 6x - 3$	2				
7.	For the straight line with equation $2y = 3x + 4$					
	(a) Write down the gradient of this line	2				
	(b) State the coordinates of the y-intercept	1				
8.	The diagram shows part of the graph $y = x^2 + 6x - 16$, State the coordinates of the	2				
	of the turning point A					

Answers

Paper 1	Paper 2			
1. 6	1. $84000 \times 0.75^3 = 35437.50 = 35400$			
2. $-2x^2 + 11x + 4$	2. $\pi \mathbf{x3}^2 \mathbf{x8} = 72 \pi = (226.19), \frac{2000}{72\pi} (= 8.84),$			
	answer rounds down to 8 glasses			
3. $m = 4/5$, $y = 4/5x - 2$	3. $20.2^2 = 408.04$, $10^2 + 17.5^2 = 406.25$			
	$408.04 \neq 406.25, \ 20.2^2 \neq 10^2 + 17.5^2$			
	So by the converse of Pythagoras this is not a			
	right-angled triangle			
4. $(2x-1)(x+3)$	4. $\cos PQR = 15^2 + 24^2 - 10^2 = 701$			
	2 x 15 x 24 720			
	$PQR = 13^{\circ}$			
5. $x = 3, y = 2$	5. show full substitution into quadratic formula,			
	discriminant is $\sqrt{40}$, answer -1.2, 5.2			
6. $b^2 - 4ac = (6^2) - 4x^3x(-3)$ = 72	6. $\frac{angle}{360} \ge \pi \ge 12 = 7$, angle is 66.8°			
72 > 0, 2 distinct real roots	500			
7 (a) $y = 3/2x + 2$, m = 3/2	7. Volume of a cone 414.690,			
(b) $(0,2)$	Volume of a hemisphere 452.389 ,			
(-) (-)-)	total volume $867.079 = 870$ cm ³			
8. (-3, -25)	8. Establish a right-angled triangle			
- (-) -)	Use Pythagoras $x^2 = 1.95^2 - 1.25^2$,			
	x = 1.5 m, height is 3.45m			
	,			

Extra Practice

1.	Fractions	Q2 Pg 342	1.	Percentage inc/dec	Q7-9 Pg 331
2.	Expanding brackets	Q5 Pg 30 Q3 Pg 32	2.		
3.	Straight lines	Q2,3 Pg 98	3.	Cosine Rule	Q1 Pg 303
4.	Factorising	Q1 Pg 40	4.	Converse of Pythagoras	Q1,2 Pg 208
5.	Simultaneous equations	Q1 Pg 127	5.	Quadratic Formula	Q2 Pg 188
6.	Discriminant	Q1, Pg 201	6.	Sector angle	Q1,2 Pg 74
7.	Straight lines	Q1,2 Pg 108	7.	Volume	Q1,3 Pg 82
8.	Quadratic Graphs	Q3 Pg 172	8.	Perpendicular Bisectors	Q1 Pg 227